Innovation and Human Capital Policy

NBER Innovation Boot Camp July 21st, 2022

John Van Reenen

LSE and MIT

Why is human capital policy attractive to boost innovation?

- Demand Side innovation Policies
 - Fiscal incentives (e.g. R&D tax credits)
 - Direct subsidies to firms (e.g. SBIR)
 - Seem effective in micro studies. But if supply side inelastic, main effect is to increase R&D price rather than volume (Romer, 2001)
- Supply side innovation policy (survey in Van Reenen, 2022)
- Increase quantity of R&D workers direct boost to innovation
 - Supply reduces R&D price indirect boost via GE effect
 - But (i) leakage" concern & (ii) slower than subsidy

Innovation Policy: The "Lightbulb" Table

(1)	(2)	(3)	(4)	(5)	(6)	
Policy	Quality of evidence	Conclusivenes s of evidence	Benefit - Cost	Time frame:	Effect on inequality	-
Direct R&D Grants	Medium	Medium	૾ૻૡ૽ૢૼૼૼૼૼૻૡ૽ૢૼૼૼૼ	Medium-Run	↑	ſ
R&D tax credits	High	High	૾ૻૡ૽ૢૼૼૼૼ૽ૻૡ૽ૢૼૼૻૻૡ૽ૢૼૼૼૼૼ	Short-Run	↑	"Demand"
Patent Box	Medium	Medium	Negative	n/a	↑	
Skilled Immigration	High	High	૾ૻૡ૽ૢૼૼ૽ૻૡ૽ૢૼૺૻૡ૽ૢૼૼૼૼ	Short to Medium-Run	\downarrow	
Universities: incentives	Medium	Low	Ř.	Medium-Run	\uparrow	
Universities: STEM Supply	Medium	Medium	૾ૻૡ૽ૢૼૼૼૼૼ૽ૻૡ૽ૢૼૼૼૼ	Long-Run	\downarrow	"Supply"
Exposure Policies	Medium	Low	૾૽ૡૢૼૺૼૼૼ૽ૡૢૼૺૼૼૼ	Long-run	\downarrow	Supply
Trade and competition	High	Medium	૾ૻૡૢૼૺૼૼૼ૽ૻૡૢૼૺૼૼૼ	Medium-Run	\uparrow	
Gr: Inn						
Chuncinge						

Source: Bloom, Van Reenen and Williams (2019, JEP)

Innovation Policy: The "Lightbulb" Table

(1)	(2)	(3)	(4)	(5)	(6)	
Policy	Quality of evidence	Conclusivenes s of evidence	Benefit - Cost	Time frame:	Effect on inequality	-
Direct R&D Grants	Medium	Medium	૾ૻૡ૽ૢૻૼૼૻૻૻૡ૽ૢૻૼૼૼૼ	Medium-Run	↑	Γ
R&D tax credits	High	High	૾ૻૡૢૻૼૼ૾ૺૻૡૢૻૼૼૼૻૻૻૡ૽ૢૼૼ૾	Short-Run	↑	"Demand"
Patent Box	Medium	Medium	Negative	n/a	↑	
Skilled Immigration	High	High	૾ૡૢૻૺ૾૽ૻૡ૽ૢૼૺ૾૽ૻૡ૽ૢૼૺ૾	Short to Medium-Run	\downarrow	
Universities: incentives	Medium	Low	<u>`@</u> `	Medium-Run	↑	
Universities: STEM Supply	Medium	Medium	૾ૻૡ૽ૢૻૼૼૼૻૻૡ૽ૢૻૼૼૼૼ	Long-Run	\downarrow	"Supply"
Exposure Policies	Medium	Low	ૻૡ૽ૢૼૼ૽ૻૡ૽ૢૻૼૺ૾	Long-run	\downarrow	Suppry
Trade and competition	High	Medium	ૻૡૢૼૺ૽ૻૡૢૼૺૼૼૼ	Medium-Run	\uparrow	
Trade and competition Gr: Inn Channenge	Hıgh	Medium		Medium-Run	↑	L

Types of Human Capital Policy

- Increase supply of STEM qualified people
- Expand Universities
 - General
 - Effect via supply of grads and postgrads
 - National Labs (Jaffe and Lerner, 1990)
 - Academic incentives (Lach & Schankerman, 2008; Hvide and Jones, 2018)
- Immigration
- "Lost Einsteins and Marie Curies"

Universities: General Effects

- Positive impact of university entry/expansion on GDP per capita

 Valero and Van Reenen (2019), 50 years of sub-national data
 across 100 countries
- Effects of universities on innovation (usually positive)
 - Jaffe (1989): US state-level spending on university research associated with more local corporate patenting
 - Acs et al (1992) using innov surveys
 - Belenzon and Schankerman (2013), Hausman (2018) on patenting

Some Issues with university studies

- Endogeneity of university presence/expansion
 - Furman & MacGarvie (2007) use Morrill Acts (land grant college funds) to IV for university location looking at impact on corporate pharma R&D labs 1927-46
- Even if causal impact of universities on innovation, is the mechanism through graduate supply? Alternatives:
 - Faculty research/activity
 - Institution building (Valero & Van Reenen, 2019)
 - Demand (Andrews, 2018)

Is the university impact on innovation (partially) through graduate supply? More direct evidence

- Bianchi & Giorcelli (2020)
 - Enrolment requirements changed for STEM majors in Italy
 - Subsequent innovation increased, especially in bio-medical & ICT
 - But some leakage into other sectors (like finance)
- Increase in STEM-focused colleges and long-term innovation (patenting measures)
 - Toivanen & Vaananen (2016), founding of technical schools in 1960s led to supply increase of engineers in Finland
 - Carneiro, Liu & Salvanes (2018), university expansion in Norway in 1970s led to STEM supply boost

Types of Human Capital Policy

- Increase supply of STEM qualified people
- Expand Universities
- Immigration
- "Lost Einsteins"

Immigration ("Buy rather than Make")

- Kerr & Kerr (2022): Immigrants are 14% of US workforce but 25% of patents; 42% of STEM doctorates, 1/3 Nobel Prizes
- Relaxing immigration an attractive policy because:
 - Quickly increases STEM workforce
 - Foreign country pays for (at least) some of training
- Note that zero sum from a world perspective. "Brain Drain" vs. "Brain Gain" ethical issues.

Empirical Findings on immigration and innovation

- Generally, studies find positive effect on innovation of immigrants themselves and from spillovers to natives
 - Hunt & Gauthier-Loiselle (2010) state panel 1940-2000; Kerr & Lincoln (2010) on H1(B) policy changes
 - Bernstein, Diamond, McQuade & Pousada (2021):
 - Infutor data/USPTO to get SSN based measure of immigrant status
 - Immigrants 10% of pop, 16% of inventors & ~30% of ag. innovation
 - Use premature inventor deaths to identify spillovers (30% of ag. innov immigrants)
 - Moser and San (2019); Doran and Yoon (2018) 1920s quota IV
 - Moser, Voena & Waldinger (2014): Jewish scientists fleeing Nazis

Empirical Findings on immigration and innovation

- Generally find positive effect on innovation of immigrants themselves and from spillovers to natives
- Exceptions: Doran et al (2015) on H1(B) lotteries (zero effect); Borjas & Doran (2015) on US mathematicians after fall of Communism
- Problem with pro-immigration policy is socio-political (Tabellini, 2020)

Types of Human Capital Policy

- Increase supply of STEM qualified people
- Expand Universities
 - General
 - Effect via supply of grads and postgrads
 - National Labs
 - Academic incentives
- Immigration
- "Lost Einsteins"

"Lost Einsteins and Marie Curies"

- Quality of inventor pool could be improved as well as quantity
- Bell, Chetty, Jaravel, Petkova & Van Reenen (2019, QJE) match US patent applicants & grants 1996-2014 to de-identified tax records
- Kids from low income families, minorities and women underrepresented in the inventor pool
- Vast majority of this is not due to lower ability, but rather lack of opportunity/exposure to innovation

Patent Rates vs. Parent Income Percentile

Notes: Sample of children is 1980-84 birth cohorts. Parent Income is mean household income from 1996-2000.

Patent Rates vs. Parent Income Percentile

Notes: Sample of children is 1980-84 birth cohorts. Parent Income is mean household income from 1996-2000.

Notes: Sample of children is 1980-84 birth cohorts. Parent Income is mean household income from 1996-2000.

Gender: Percentage of Female Inventors by Birth Cohort

Distribution of Math Test Scores in 3rd Grade for Boys vs. Girls

Patent Rates vs. 3rd Grade Math Test Scores by Race and Ethnicity ω 90th Percentile Inventors per Thousand ဖ 4 \sim 0 -2 2 -1 3rd Grade Math Test Score (Standardized) Black White Hispanic Asian

The Origins of Inventors: Patent Rates by Childhood Commuting Zone

Patent Rates of Children who Grow up in a Commuting Zone vs. _o Patent Rates of Adults in that Commuting Zone

Identification of the causal impact of place-based exposure

- **Timing and Fixed effects:** Regress adult outcomes on childhood exposure, including current destination place effects
- Use the sharp discontinuity by **technology class**.
 - Idea is that growing up in area that specializes in software (vs. medical devices) relatively more likely to innovate in software (vs. medical devices)
- Movers design: compare families where kids moved at early vs. later age

Lost Einstein Policies

- Education policies
- Mentorship/internships
- Tackling Discrimination

Within School tracking for Gifted and Talented ("G&T")

- Card and Giuliana (2016) study large urban US School District with in-school tracking program
- 4th and 5th graders. If a G&T pupil, school has to have a separate "Gifted/High Achievers" class. But, since few G&T most seats are simply high achievers
- Since lots of between school segregation many high achievers are Black & Hispanics
- Rank RD Design shows large positive effects on Math & English for minorities (0.5sd). Persist until at least 6th grade
- Diff-In-Diffs on cohort shows no negative effects on kids who don't get selected into GHA class
- Not better teachers or quality peers, but teacher expectations

Within School tracking

- Cohodes (2010) looks at similar in-school tracking in Boston Public School System
- 3rd graders in Advanced Work Class. Half are minorities
- Fuzzy RDD finds college enrolment 15 pp higher, with gains mainly from minority students (65% increase in college enrolment on 4 year course)

Summary on examples of exposure programs in Card & Giuliano (2016) and Cohodes (2020)

- Not simply a G&T programs (where low income and minority kids often don't quality). These ambiguous (e.g. Bui et al, 2014)
- Rather, both papers a broader within (not between) school tracking policy to create exposure

Conclusions on Human Capital Policies for innovation

- Human capital policy acts on supply side, so more attractive than "demand side" tax/subsidy policies
 - Lower risk of increasing equilibrium costs (and inequality)
 - And some evidence of successful interventions
- But some limitations:
 - Less of an empirical literature than demand side policies
 - Policies will take longer to have an effect
 - Leakage issues (although less of a problem for US than for other countries)